Convex optimization techniques for the efficient recovery of a sparsely corrupted low-rank matrix
نویسندگان
چکیده
We address the problem of recovering a low-rank matrix that has a small fraction of its entries arbitrarily corrupted. This problem is recently attracting attention as nontrivial extension of the classical PCA (principal component analysis) problem with applications in image processing and model/system identification. It was shown that the problem can be solved via a convex optimization formulation when certain conditions hold. Several algorithms were proposed in the sequel, including interior-point methods, iterative thresholding and accelerated proximal gradients. In this work we address the problem from two completely different sides. First, we propose an algorithm based on the Douglas-Rachford splitting technique which has inherent convergence guarantees. Second, we propose, based on algorithms from rank minimization and sparse vector recovery, a computationally efficient greedy algorithm that scales better to large problem sizes than existing algorithms. We compare the performance of these proposed algorithms to the accelerated proximal gradients algorithm.
منابع مشابه
Exact Tensor Completion from Sparsely Corrupted Observations via Convex Optimization
This paper conducts a rigorous analysis for provable estimation of multidimensional arrays, in particular third-order tensors, from a random subset of its corrupted entries. Our study rests heavily on a recently proposed tensor algebraic framework in which we can obtain tensor singular value decomposition (t-SVD) that is similar to the SVD for matrices, and define a new notion of tensor rank re...
متن کاملConvex Optimization Based Low-Rank Matrix Completion and Recovery for Photometric Stereo and Factor Classification
We present a new approach to robustly solve the photometric stereo problem. We cast the problem of recovering surface normals from images taken under multiple lighting conditions as a one of recovering a low-rank matrix from missing and corrupted observations, which model many different non-Lambertian effects such as shadows and specularities. Unlike previous approaches that use least-squares o...
متن کاملRobust Transfer Principal Component Analysis with Rank Constraints
Principal component analysis (PCA), a well-established technique for data analysis and processing, provides a convenient form of dimensionality reduction that is effective for cleaning small Gaussian noises presented in the data. However, the applicability of standard principal component analysis in real scenarios is limited by its sensitivity to large errors. In this paper, we tackle the chall...
متن کاملRepairing Sparse Low-Rank Texture
In this paper, we show how to harness both lowrank and sparse structures in regular or near regular textures for image completion. Our method leverages the new convex optimization for low-rank and sparse signal recovery and can automatically correctly repair the global structure of a corrupted texture, even without precise information about the regions to be completed. Through extensive simulat...
متن کاملTensor completion and low-n-rank tensor recovery via convex optimization
In this paper we consider sparsity on a tensor level, as given by the n-rank of a tensor. In the important sparse-vector approximation problem (compressed sensing) and the low-rank matrix recovery problem, using a convex relaxation technique proved to be a valuable solution strategy. Here, we will adapt these techniques to the tensor setting. We use the n-rank of a tensor as sparsity measure an...
متن کامل